

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Synthesis of a Novel Silica-Based Macroporous Polymer Containing TODGA Chelating Agent and Its Application in the Chromatographic Separation of Mo(VI) and Zr(IV) from Diethylenetriaminepentaacetic Acid

Anyun Zhang^a; Yuezhou Wei^a; Harutaka Hoshi^a; Mikio Kumagai^a

^a Nuclear Chemistry and Chemical Engineering Center, Institute of Research and Innovation, Kashiwa, Chiba, Japan

To cite this Article Zhang, Anyun , Wei, Yuezhou , Hoshi, Harutaka and Kumagai, Mikio(2005) 'Synthesis of a Novel Silica-Based Macroporous Polymer Containing TODGA Chelating Agent and Its Application in the Chromatographic Separation of Mo(VI) and Zr(IV) from Diethylenetriaminepentaacetic Acid', Separation Science and Technology, 40: 4, 811 — 827

To link to this Article: DOI: 10.1081/SS-200041145

URL: <http://dx.doi.org/10.1081/SS-200041145>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis of a Novel Silica-Based Macroporous Polymer Containing TODGA Chelating Agent and Its Application in the Chromatographic Separation of Mo(VI) and Zr(IV) from Diethylenetriaminepentaacetic Acid

Anyun Zhang, Yuezhou Wei, Harutaka Hoshi, and Mikio Kumagai

Nuclear Chemistry and Chemical Engineering Center, Institute of Research and Innovation, Kashiwa, Chiba, Japan

Abstract: A novel silica-based N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) chelating polymeric material (TODGA/SiO₂-P) was synthesized by impregnating TODGA into ~50 µm of spherical SiO₂-P particles for separating Mo(VI) and Zr(IV) from a HNO₃ solution containing 0.05 M diethylenetriaminepentaacetic acid (DTPA) in minor actinides recovery by extraction chromatography (MAREC) process. The adsorption of TODGA/SiO₂-P for Mo(VI) and Zr(IV) was investigated by examining the influence of HNO₃ and DTPA concentrations. It was found that HNO₃ concentration from 0.3 M to 9 M either with or without 0.05 M DTPA had a strong effect on the adsorption of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P. In the absence of 0.05 M DTPA, both the adsorption of Mo(VI) and Zr(IV) decreased with an increase in the concentration of HNO₃ from 0.3 M to 3 M and then gradually increased. In the presence of 0.05 M DTPA, Zr(IV) showed scarcely any adsorption towards TODGA/SiO₂-P below 2 M HNO₃ and was gradually adsorbed from 2 M to 3 M HNO₃ while Mo(VI) showed almost no

Received April 28, 2004, Accepted September 14, 2004.

This work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) under the framework of the “Development of Innovation Nuclear Technologies.”

Address correspondence to Anyun Zhang, Nuclear Chemistry and Chemical Engineering Center, Institute of Research and Innovation, 1201 Takada, Kashiwa, Chiba, 277-0861 Japan. E-mail: zhang@iri.or.jp

adsorption. In excess of 3 M HNO₃, the adsorption curve of Mo(VI) or Zr(IV) fully overlapped with that of the absence of 0.05 M DTPA. This resulted from the dissociation of Mo(VI) or Zr(IV) from its complex with DTPA because of full protonation of DTPA in high HNO₃ concentration and the strong complexation taking place simultaneously with TODGA/SiO₂-P. In terms of the batch experiments, the separation of Mo(VI) and Zr(IV) from a 3 M HNO₃ solution containing 0.05 M DTPA was performed by employing the TODGA/SiO₂-P packed column at 50°C. Molybdenum(VI) was found to leak out of the column along with 3 M HNO₃. Zirconium(IV) adsorbed by TODGA/SiO₂-P was effectively eluted by 0.5 M H₂C₂O₄. The recovery was 101.6% for Mo(VI) and 94.8% for Zr(IV).

Keywords: N,N,N',N'-Tetraoctyl-3-oxapentane-1,5-diamide, macroporous silica-based polymeric composite, adsorption, chromatographic separation, MAREC process

INTRODUCTION

It is well known that a variety of extraction processes such as TRUEX, UNEX, SETFICS, TRPO, TODGA, UNEX and others using various organic chelating agents such as octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA), and 2,6-bis(5,6-dialkyl-1,2,4,-triazine-3-yl)pyridine (R-BTP), bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) etc., are quite effective for the separation of long-lived radioisotopes from high level liquid waste (HLLW) in the reprocessing process (1–4). However, the investigations carried out currently focused mainly on the separation of actinides and lanthanides by liquid-liquid solvent extraction (5–7). Sufficient attention on the separation of fission products (FPs) such as Mo and Zr contained in acidic HLLW by extraction chromatographic resin is lacking.

A new partitioning process named MAREC (Minor Actinides Recovery from HLLW by Extraction Chromatography) process using a more novel silica-based CMPO extraction resin (CMPO/SiO₂-P) has been proposed and developed recently by the title authors for separating Am(III) and Cm(III) from a 3 M HNO₃ solution (8, 9). These studies are carried out based on a separation flow sheet as illustrated in Fig. 1. Two columns packed with CMPO/SiO₂-P extraction resin are utilized for the chromatographic separation of the elements through selective adsorption and elution procedures. In the first column, the elements can be effectively separated into the following three groups depending on their different adsorption and elution behavior which result from the complexation ability of the metal ions with CMPO and diethylenetriaminepentaacetic acid (DTPA): 1) nonadsorptive FP elements such as Cs, Sr, Rh, and Ru; 2) minor actinides (MA), heavy rare earths (*h*RE) (Eu-Lu and Y), Zr, Mo, and Pd; and 3) light rare earths (*l*RE). The MA-containing effluent is applied to the second column where the elements are separated to 1) Pd, 2) MA-*h*RE, and 3) Zr-Mo, respectively, by using H₂O and 0.05 M

Figure 1. Flowsheet of MAREC process for the partitioning of minor actinides from an acidic HLLW by extraction chromatography.

DTPA-pH 2.0 or 0.5 M $\text{H}_2\text{C}_2\text{O}_4$ as eluents (10, 11). In terms of this process, the preliminary investigations such as the elimination of $\text{Sr}(\text{II})$ by a silica-based 4,4',(5')-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) polymeric composite and the resistance properties of some adsorbents mainly used in MAREC process against HNO_3 , heat, and γ -irradiation were performed (12–16). Moreover, the resultant Zr-Mo solution containing 0.05 M DTPA or 0.5 M $\text{H}_2\text{C}_2\text{O}_4$ provides a possibility for the separation of Mo(VI) and Zr(IV) from each other.

Molybdenum (Mo) is one of the main fission products and shears about 0.6–0.7 wt% of the total quantity of FPs produced in the reprocessing process of nuclear spent fuel from the fast breed reactor (FBR). It is reported that Mo hampers the vitrification of HLLW in final disposal process because of low solubility of Mo oxides in molten glass materials. Moreover, most of the Mo produced in the reprocessing process is the stable isotope, except Mo-99, which has a short half-life of 2.75 days. From the viewpoint of reduction significant of the quantity of high radioactive liquid and solid waste and geologic disposal of HLLW, the removal of Mo from HLLW is quite necessary in technique. On the other hand, in the MAREC process we developed, requires the elimination of Mo from Zr solution containing 0.05 M DTPA or 0.5 M $\text{H}_2\text{C}_2\text{O}_4$ to a great extent.

$\text{N,N,N',N'-Tetraoctyl-3-oxapentane-1,5-diamide}$ (TODGA) is a hard-donor complexant containing O-atom. It could effectively separate actinides(III) and lanthanides(III) from HLLW based on the different coordination ability

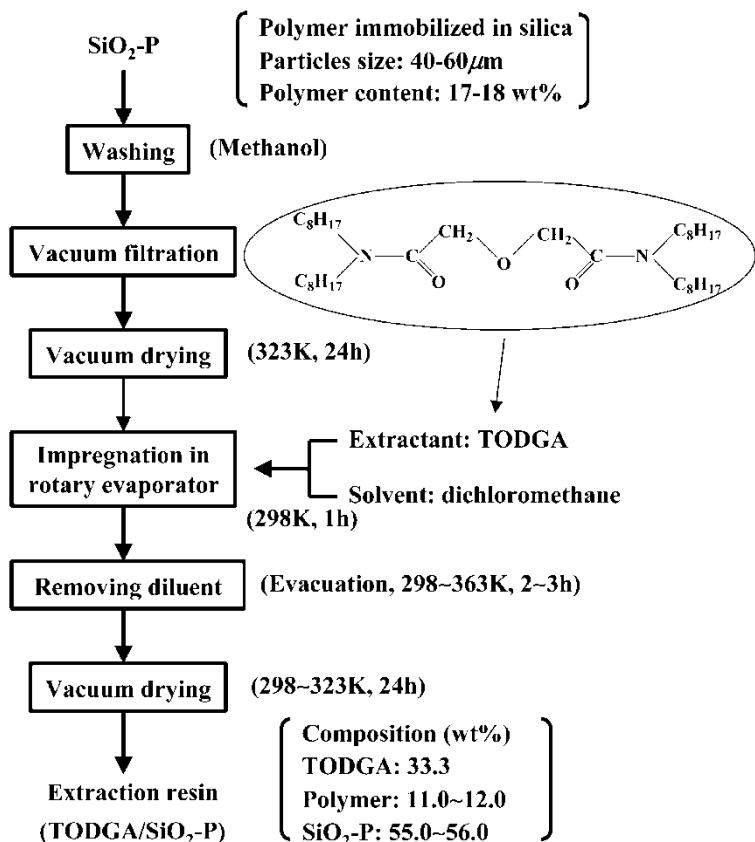
of TODGA and these metals (17–21). Consideration of a difference in affinity of the O atom contained in the TODGA molecule with Mo(VI) and Zr(IV), may make the separation of Mo(VI) and Zr(IV) feasible. To verify this hypothesis and separate Mo(VI) and Zr(IV) from their mixture obtained in the second column in the MAREC process, we have developed and synthesized a novel silica-based macroporous TODGA extraction resin (TODGA/SiO₂-P) by impregnating TODGA into the pores of polymeric SiO₂-P particles. In present works, the adsorption properties of this new extraction resin for Mo(VI) and Zr(IV) were investigated in a wide HNO₃ concentration range of 0.3–9 M with and without containing 0.05 M DTPA. On the basis of the batch experiments, the separation of Mo(VI) and Zr(IV) from a 3 M HNO₃ solution containing 0.05 M DTPA was performed by the TODGA/SiO₂-P resin packed column.

EXPERIMENTAL

Materials

The ZrO(NO₃)₂·2H₂O and (NH₄)₆Mo₇O₂₄·4H₂O were of analytical grade. The concentrations of Mo(VI) and Zr(IV) used were 5.01×10^{-3} M and 3.36×10^{-3} M in batch experiments as well as 7.57×10^{-3} M and 5.12×10^{-3} M in column experiments, respectively. A hard-donor chelating agent N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA), with a purity greater than 99%, was an available commercial product and was purchased from the Kanto Chemical Co. Inc., Japan. Diethylenetriamine-pentaacetic acid (DTPA) employed as a chelating eluent was purchased from Tokyo Kasei Kogyo Co. Ltd., Japan, and its purity was greater than 98%. To avoid a precipitate of Zr(IV), HNO₃ concentration in each sample used was above 0.3 M. The various solutions of Mo(VI) and Zr(IV) with a given HNO₃ concentration, 0.01–0.45 M DTPA, 0.5 M H₂C₂O₄, and Mo(VI)-Zr(IV)-3 M HNO₃-0.05 M DTPA feed solution were prepared temporarily.

The silica-based TODGA extraction resin (TODGA/SiO₂-P) used was synthesized in our laboratory utilizing an advanced impregnation technique developed recently, i.e., by impregnating TODGA molecule into the pores of SiO₂-P particles, which was prepared in advance by an immobilization reaction of inert copolymer inside macroporous SiO₂. The immobilization procedure was caused by a polymerization reaction between the SiO₂ particles and some selected organic monomers, initiators, and solvent such as m/p-divinylbenzene, α,α -azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, m/p-formylstyrene, methylbenzoate, and diethylphthalate as described previously (12, 22). The P contained in the SiO₂-P particles refers to the resultant inert styrene-divinylbenzene copolymer.


Oxalic acid, methanol, dichloromethane, and other reagents used in the experiments were of analytical grade and were used without further purification.

Synthesis of Silica-Based TODGA/SiO₂-P

Prior to synthesis of TODGA/SiO₂-P the macroporous SiO₂-P particles used were washed fully by methanol three times at room temperature. A 10 g amount of N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide dissolved in 200 mL of dichloromethane and 20 g of SiO₂-P particles were mixed into a 500 mL flask and stirred mechanistically for 90 min at room temperature. Subsequently, the mixture was moved into a silicon-oil bath controlled by an EYELA OHB-2000 Model temperature controller (Tokyo Rikakikai Co. Ltd., Japan) and stirred further for about 180 min at around 50°C to impregnate and immobilize N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide molecule into the pores of SiO₂-P particles. After drying in a vacuum drying oven at 50°C for 24 h, the polymeric adsorption material TODGA/SiO₂-P was obtained. It was characterized using a TGA-50 Model thermogravimetric analyzer (Shimadzu, Japan), a DSC-50 Model differential scanning calorimeter (Shimadzu, Japan), and a FlashEA-1112 CHNS-O Model elementary analyzer (ThermoFinnigan, Italy), respectively. The composition (wt%) of resulting TODGA/SiO₂-P polymeric composite was determined as 33.3 wt% TODGA, 11.4 wt% organic copolymer, and 55.3 wt% SiO₂-substrate, respectively. The schematic diagram of synthesizing TODGA/SiO₂-P polymeric adsorbent was illustrated in Fig. 2.

Adsorption of Mo(VI) and Zr(IV) Towards TODGA/SiO₂-P

All of the batch experiments were performed at the phase ratio of 0.25 g/5 mL and shaking speed of 120 rpm. A weighed amount of dry TODGA/SiO₂-P extraction resin as a solid phase was mixed with 5 mL of HNO₃ solution containing 5.01×10^{-3} M Mo(VI) and 3.36×10^{-3} M Zr(IV) in the absence or presence of DTPA as a solid phase into a 50 mL ground glass-stopped flask and shaken mechanically using a MM-10 Model thermostated water bath shaker (TAITEC, Japan) for 180 min. The concentrations of HNO₃ and DTPA were from 0.3 M to 9 M and from 0.01 M to 0.45 M, respectively. The shaking speed was 120 rpm. After the phase separation, the concentrations of Mo(VI) and Zr(IV) in aqueous phase were determined with an SPS 5000 Model ICP-AES (Atomic Emission Spectrometer, Seiko, Japan). The distribution coefficients (K_d) of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P

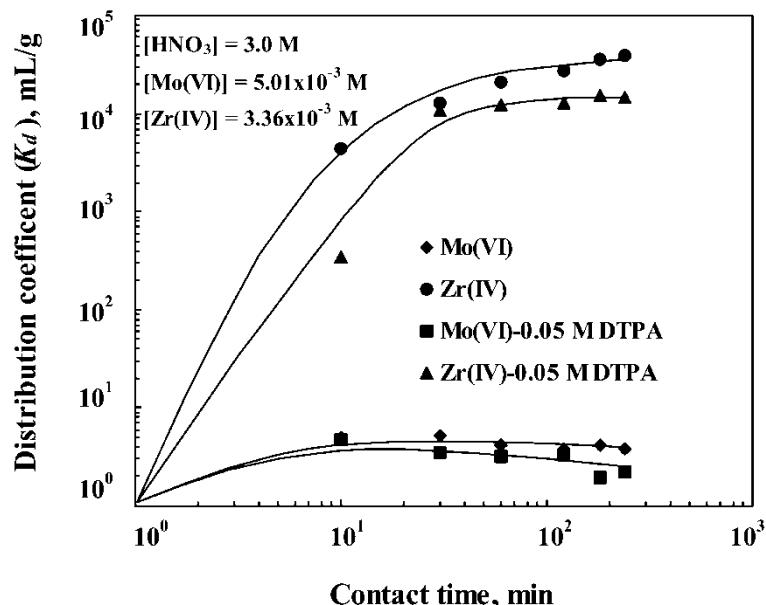
Figure 2. Synthesis of macroporous TODGA/SiO₂-P polymeric adsorption material.

extraction resin were calculated as follows:

$$K_d = \frac{C_o - C_e}{C_e} \times \frac{V}{W} \text{ (mL/g)} \quad (1)$$

where C_o and C_e denote the concentrations of Mo(VI) and Zr(IV) in aqueous phase initially and at a later time, respectively. W and V represent the weight of dry TODGA/SiO₂-P extraction resin and the volume of the aqueous phase used in the experiments.

Chromatographic Separation of Mo(VI) and Zr(IV)


A weighed quantity of TODGA/SiO₂-P extraction resin equilibrated fully with 3 M HNO₃ before experiments was packed into a glass column with

10 mm in inner diameter and 220 mm in length. A constant temperature used in the loading and elution cycle was maintained at 50°C by circulating the thermostated water through an EYELA NTT-1200 Model water jacket (Tokyo Rikakikai Co. Ltd., Japan). The flow rate was controlled to 1 mL/min. After the feed solution containing 7.57×10^{-3} M Mo(VI), 5.12×10^{-3} M Zr(IV), 0.05 M DTPA, and 3 M HNO₃ passed through the column, the given volumes of 3 M HNO₃, 0.1 M HNO₃, distilled water, and 0.5 M H₂C₂O₄ as eluents were subsequently pumped down-flow through the adsorption column. 10 mL aliquots of effluent fractions were collected by a DC-1500 Model Auto-Fractional Collector (Eyela, Japan). The concentrations of Mo(VI) and Zr(IV) in effluent were analyzed by ICP-AES mentioned previously.

RESULTS AND DISCUSSION

Adsorption Equilibrium of Mo(VI) and Zr(IV) Towards TODGA/SiO₂-P

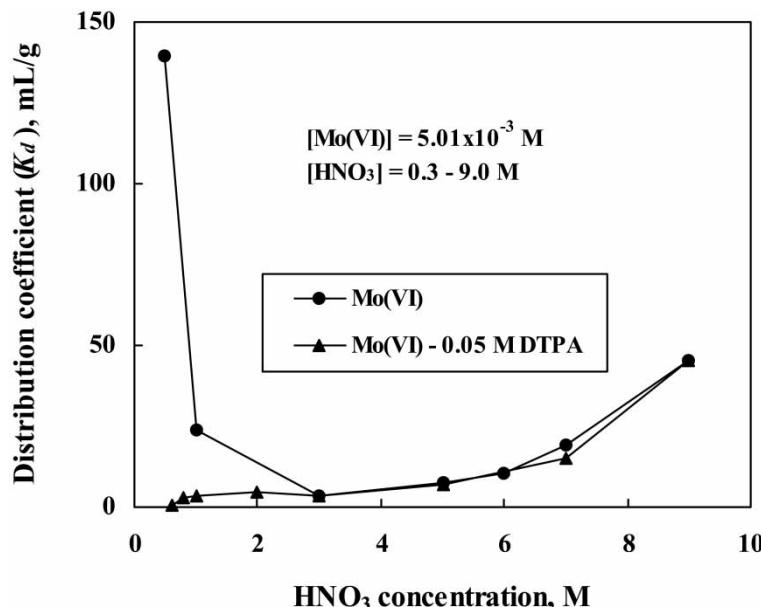
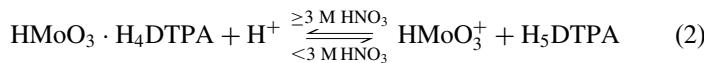
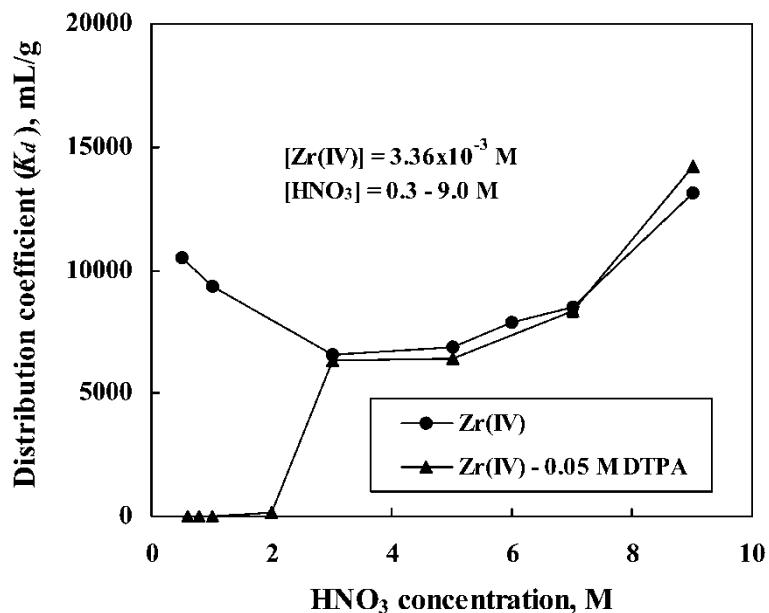

The effect of contact time on the adsorption of TODGA/SiO₂-P extraction resin for Mo(VI) and Zr(IV) in 3 M HNO₃ with and without containing 0.05 M DTPA was studied at a phase ratio of 0.25 g/5 mL at 25°C. The concentrations of Mo(VI) and Zr(IV) in the aqueous phase were 5.01×10^{-3} M and 3.36×10^{-3} M, respectively. The results were shown in Fig. 3. Evidently, with an increase in contact time, the adsorption of Zr(IV) towards TODGA/SiO₂-P increased rapidly initially and reached the equilibrium quickly after 100 min. Despite the distribution coefficient of Zr(IV) in 3 M HNO₃-0.05 M DTPA was slightly lower than that in 3 M HNO₃, the distribution coefficients of Zr(IV) onto TODGA/SiO₂-P both in the absence and presence of 0.05 M DTPA always showed considerably higher and were over 1.2×10^4 mL/g. Such a high value in the distribution coefficient was due to the strong complexation of TODGA/SiO₂-P resin for Zr(IV). The influence of 0.05 M DTPA on the adsorption of Zr(IV) seemed not very significant. Contrary to the high adsorption of Zr(IV), Mo(VI) showed almost no adsorption towards TODGA/SiO₂-P in 3 M HNO₃ both with and without 0.05 M DTPA, and the distribution coefficient of Mo(VI) was always below 4 mL/g. This low value in the distribution coefficient indicated that in 3 M HNO₃, the complex ability of TODGA/SiO₂-P for Mo(VI) in both cases was very weak. Such a poor ability in the forming complex resulted in Mo(VI) almost uncomplexing with TODGA/SiO₂-P resin. Based on an obvious difference in the adsorption ability of TODGA/SiO₂-P for Mo(VI) and Zr(IV) in 3 M HNO₃, it was promising to separate Mo(VI) and Zr(IV) each from 0.05 M DTPA.

Figure 3. Adsorption of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P resin with a change in contact time. [HNO₃] = 3.0 M, the phase ratio = 0.25 g/5 mL.

Effect of HNO₃ Concentration on the Adsorption of Mo(VI) and Zr(IV)


The influence of HNO₃ concentration at the range of 0.3 M to 9.0 M on the adsorption of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P resin was investigated at the constant phase ratio, the concentrations of Mo(VI) and Zr(IV) and contact time were 0.20 g/5 mL, 5.01×10^{-3} M, 3.36×10^{-3} M, and 180 min, respectively. The results are shown in Figs. 4 and 5, respectively. As can be seen from Fig. 4, in the absence of 0.05 M DTPA, the distribution coefficient (K_d) of Mo(VI) noticeably lowered with an increase in the HNO₃ concentration from 0.3 M to 3 M and then slowly increased from 3.0 M to 9 M. However, in the presence of 0.05 M DTPA, the adsorption of Mo(VI) onto TODGA/SiO₂-P resin was always quite weak before 3 M HNO₃, i.e., Mo(VI) showed almost no adsorption onto TODGA/SiO₂-P resin, which resulted from the complexation of Mo(VI) with DTPA. Then, the adsorption of TODGA/SiO₂-P resin for Mo(VI) gradually increased. In the whole adsorption process, a valuable phenomenon was that both the adsorption curves of Mo(VI) towards TODGA/SiO₂-P resin overlapped fully in both cases. Such an overlapping in the adsorption curves reflected that 3 M HNO₃ was an interconversion acidity for the complex formation and


Figure 4. Effect of HNO_3 concentration on the adsorption of Mo(VI) towards TODGA/SiO₂-P resin. The phase ratio = 0.20 g/5 mL, $[\text{HNO}_3] = 0.3 - 9 \text{ M}$, $[\text{DTPA}] = 0.05 \text{ M}$.

dissociation of Mo(VI) and DTPA, i.e., the complex of Mo(VI) and DTPA was formed below 3 M HNO_3 and dissociated completely in more than 3 M HNO_3 . The dissociation of Mo(VI) ion from its complex with DTPA in excess of 3 M HNO_3 resulted from the full protonation of DTPA. So, in the presence of 0.05 M DTPA, Mo(VI) could be complexed and adsorbed gradually by TODGA/SiO₂-P resin after 3 M HNO_3 .

However, the detailed composition of the complex of Mo(VI) and DTPA has not been reported because of the quite complicated species of Mo(VI) in acidic solution (23–27). According to previous investigations, if one assumes that the composition of the complex of Mo(VI) and DTPA is $\text{HMnO}_3 \cdot \text{H}_4\text{DTPA}$, then the possible interconversion equilibrium of the complex of Mo(VI) and DTPA is described as follows:

The complex composition of Mo(VI) and TODGA also has not been reported. For the complexation and adsorption of Mo(VI) towards TODGA/SiO₂-P, assuming that the complex composition of Mo(VI) and TODGA was $\text{HMnO}_3(\text{NO}_3) \cdot 2\text{TODGA}$, then the corresponding adsorption

Figure 5. Effect of HNO_3 concentration on the adsorption of Zr(IV) onto TODGA/ $\text{SiO}_2\text{-P}$. $[\text{HNO}_3] = 0.3\text{--}9\text{ M}$, $[\text{DTPA}] = 0.05\text{ M}$, the phase ratio = $0.20\text{ g}/5\text{ mL}$.

equilibrium is presented as follows:

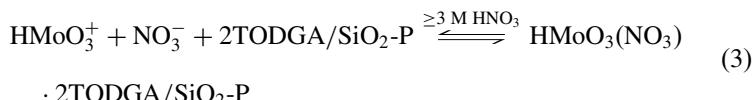
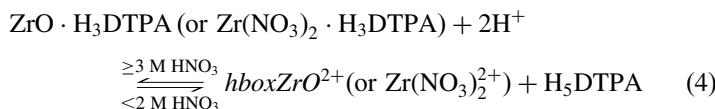
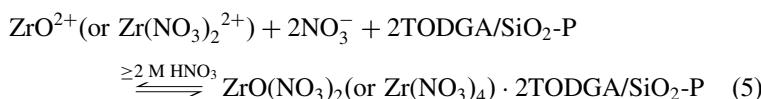
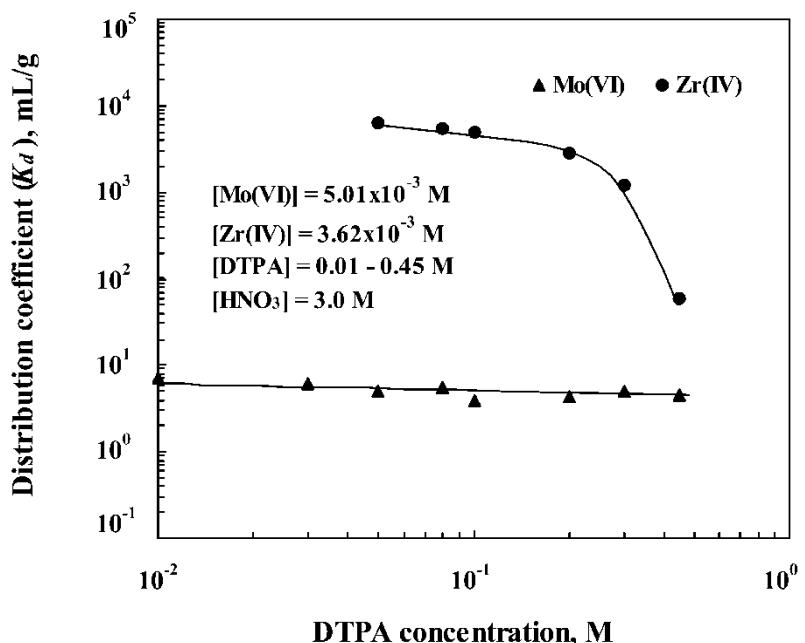




Figure 5 shows the distribution coefficient (K_d) of Zr(IV) towards TODGA/ $\text{SiO}_2\text{-P}$ resin in a wide HNO_3 concentration range of 0.3 M to 9 M . It was clear that in the absence of 0.05 M DTPA, the change trend in the adsorption of Zr(IV) onto TODGA/ $\text{SiO}_2\text{-P}$ was quite similar to that of Mo(VI), although the distribution coefficient (K_d) of Zr(IV) was obviously higher than that of Mo(VI). However, in the presence of 0.05 M DTPA, the Zr(IV) adsorption behavior was different from that of Mo(VI). The Zr(IV) showed no adsorption onto TODGA/ $\text{SiO}_2\text{-P}$ resin before 2 M HNO_3 , which resulted from the strong complexation of Zr(IV) with DTPA, part adsorption in the range of 2 M to 3 M HNO_3 . In excess of 3 M HNO_3 , Zr(IV) dissociated completely from its complex with DTPA, was strongly complexed, and was adsorbed by TODGA/ $\text{SiO}_2\text{-P}$ extraction resin. Moreover, the adsorption curves of TODGA/ $\text{SiO}_2\text{-P}$ resin for Zr(IV) both in the absence and presence of 0.05 M DTPA overlapped, which was quite similar to that of Mo(VI). Such an overlapping in the adsorption curves of Zr(IV) also can be

ascribed to the full protonation of DTPA in high HNO_3 concentration. The possible interconversion equilibrium of Zr(IV) with DTPA was expressed as follows:

If one assumes that the complex composition of Zr(IV) and TODGA is $\text{ZrO}(\text{NO}_3)_2$ (or $\text{Zr}(\text{NO}_3)_4 \cdot 2\text{TODGA}$, then, the adsorption equilibrium of Zr(IV) towards TODGA/ $\text{SiO}_2\text{-P}$ is described as follows:



Unfortunately, the detailed compositions and structures of the complex of Zr(IV) with TODGA and DTPA have not been reported so far.

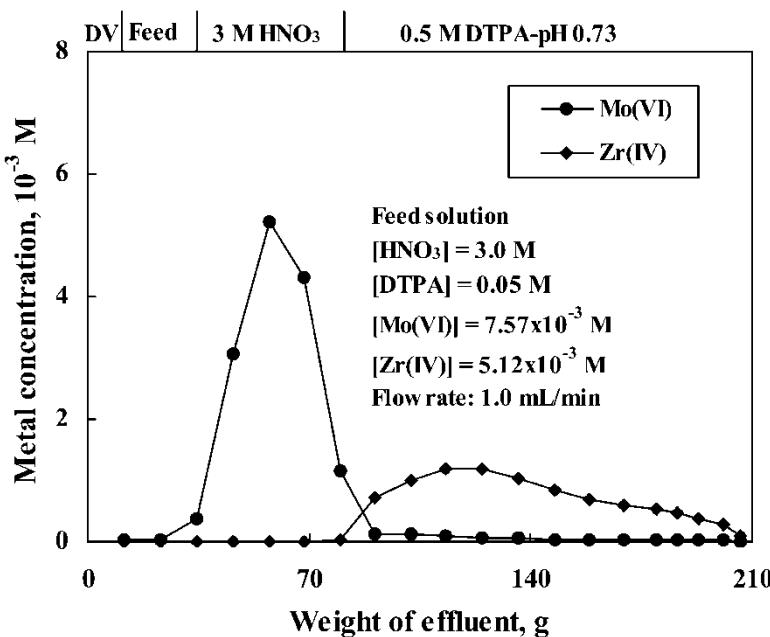
Figures 4 and 5 clearly showed the adsorption of Zr(IV) and Mo(VI) onto TODGA/ $\text{SiO}_2\text{-P}$ resin strongly relied on the HNO_3 concentration, which significantly affected the formation and dissociation of the complexes of Mo(VI) with DTPA and TODGA/ $\text{SiO}_2\text{-P}$ as well as Zr(IV) with DTPA and TODGA/ $\text{SiO}_2\text{-P}$, respectively. Because of the protonation of DTPA, the complexes of Mo(VI) or Zr(IV) with DTPA and TODGA/ $\text{SiO}_2\text{-P}$ were interconvertible at 3 M HNO_3 .

Effect of DTPA Concentration on the Adsorption of Mo(VI) and Zr(IV)

The previous results showed that DTPA as a chelating agent had an obvious impact for the adsorption of Mo(VI) and Zr(IV) towards TODGA/ $\text{SiO}_2\text{-P}$ resin based on its complexation and protonation in HNO_3 solution. To understand the effect of DTPA concentration, the adsorption of TODGA/ $\text{SiO}_2\text{-P}$ for a 3 M HNO_3 solution containing 5.01×10^{-3} M Mo(VI) and 3.36×10^{-3} M Zr(IV) was investigated at the DTPA concentration of 0.01 M to 0.45 M and a phase ratio of 0.20 g/5 mL, respectively. The results were shown in Fig. 6. With an increase in the DTPA concentration, the distribution coefficient (K_d) of Zr(IV) towards TODGA/ $\text{SiO}_2\text{-P}$ evidently decreased from 0.04 M to 0.2 M DTPA and then rapidly decreased in excess of 0.2 M DTPA. Such a decrease in the distribution coefficient resulted from the strongly complex reaction between DTPA and Zr(IV), which was produced by its dissociation of the complex with TODGA/ $\text{SiO}_2\text{-P}$ resin. The complexation of DTPA and Zr(IV) in experiment conditions was dominant in comparison with the protonation of DTPA and the complexation of TODGA/ $\text{SiO}_2\text{-P}$ and Zr(IV). So, in excess of 0.2 M, DTPA could still complex with Zr(IV) in 3 M HNO_3 .

Figure 6. Effect of DTPA concentration on the adsorption of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P. [HNO₃] = 3.0 M, [DTPA] = 0.01–0.45 M, the phase ratio of 0.20 g/5 mL.

even if it was a weakly acidic chelating agent. The distribution coefficient of Zr(IV) was 6.36×10^3 mL/g for 0.05 M DTPA and 58.0 mL/g for 0.45 M DTPA, respectively. The low distribution coefficient of Zr(IV) in high DTPA concentration reflected that Zr(IV) could be dissociated from its complex with TODGA/SiO₂-P by the competitive reaction with DTPA, i.e., with an increase in the DTPA concentration, the complex of Zr(IV) and TODGA/SiO₂-P could convert gradually to the complex of Zr(IV) and DTPA. The adsorption of TODGA/SiO₂-P for Zr(IV), therefore, decreased.

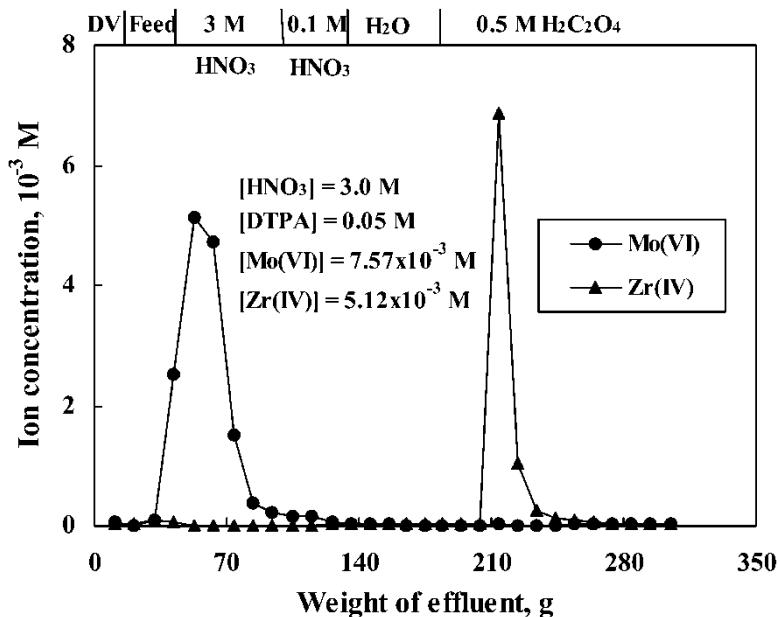

The distribution coefficient (K_d) of Mo(VI) onto TODGA/SiO₂-P resin was always quite low and below 6 mL/g in the whole concentration range of 0.01–0.45 M DTPA. Such a low value showed that when Mo(VI) existed in the 3 M HNO₃ solution there was almost no adsorption onto TODGA/SiO₂-P resin.

Chromatographic Separation of Mo(VI) and Zr(IV) from 0.05 M DTPA

According to the batch experimental results, the separation of Mo(VI) and Zr(IV) from a 0.05 M DTPA solution, which was obtained in the second

adsorption column in the MAREC process, was performed by a TODGA/SiO₂-P resin packed column at 50°C. To ensure effective adsorption of Zr(IV) towards TODGA/SiO₂-P resin, prior to the experiment the concentration of HNO₃ in feed solution was conditioned to 3.0 M by addition of the concentrated HNO₃. Such an acidification process was necessary for the dissociation of all of free Zr(IV) ions from the Zr(IV)-DTPA complex completely based on a full protonation reaction of DTPA and proton. The Mo(VI) and Zr(IV) concentrations in feed solution were 7.57×10^{-3} M Mo(VI) and 5.12×10^{-3} M Zr(IV). The column dimension was 10 mm in inner diameter and 220 mm in length. The flow rate was 1 mL/min. The separation results achieved by employing 3 M HNO₃ and 0.5 M DTPA-pH 0.73 as eluents are illustrated in Fig. 7.

As can be seen, with a supplement of washing solution, Mo(VI) showed no adsorption and quickly leaked out the column completely along with 3 M HNO₃. Such an effortless elution resulted from the considerably weak complexation of TODGA/SiO₂-P for Mo(VI). Contrary to Mo(VI), the Zr(IV) dissociated from Zr(IV)-DTPA complex in 3 M HNO₃ was strongly complexed and firmly adsorbed by TODGA/SiO₂-P resin and did not leak out of the column along with Mo(VI). However, only a portion of Zr(IV)


Figure 7. Column separation of Mo(VI) and Zr(IV) from a 3.0 M HNO₃ solution containing 0.05 M DTPA by TODGA/SiO₂-P packed column employing 0.5 M DTPA-pH 0.73 as an eluent at 50°C. Column dimension: Φ 10 mm \times h 220 mm, flow rate: 1 mL/min.

was desorbed from the loaded TODGA/SiO₂-P resin by eluting with 0.5 M DTPA-pH 0.73. The recovery rate was 99.98% for Mo(VI) and 40.5% for Zr(IV). Previous studies showed that the Zr(IV) loaded in CMPO/SiO₂-P extraction resin was effectively eluted out and recovered by employing 0.05 M DTPA-pH 2.0 as an eluent (11). Such a noticeable difference in the elution efficiency of Zr(IV) indicated that the kinetics exchange reaction of substituting the complex of Zr(IV) and DTPA for the complex of Zr(IV) and TODGA/SiO₂-P resin was probably a slow process.

In addition to DTPA, 0.5 M H₂C₂O₄ as a chelating agent, was also found to be capable of efficiently eluting Zr(IV) from the loaded CMPO/SiO₂-P resin in MAREC process (14).

To investigate the possibility of applying 0.5 M H₂C₂O₄ in the separation of Mo(VI) and Zr(IV), especially to improve the elution effect of Zr(IV), a similar separation experiment of Zr(IV) and Mo(VI) from 3 M HNO₃-0.05 M DTPA was performed at 50°C and the results were shown in Fig. 8.

Obviously, Mo(VI) showed no adsorption towards TODGA/SiO₂-P resin and leaked out of the column along with 3 M HNO₃, which was quite identical with results illustrated in Fig. 7. Its recovery rate was 101.6%. Following eluting the loaded TODGA/SiO₂-P with 0.1 M HNO₃ and distilled water, 0.5 M H₂C₂O₄ aqueous solution was employed to elute Zr(IV), which was

Figure 8. Separation of Mo(VI) and Zr(IV) from 0.05 M DTPA-3.0 M HNO₃ using 0.5 M H₂C₂O₄ as an eluent at 50°C. Column dimension: Φ 10 mm \times h 220 mm, flow rate: 1 mL/min.

firmly adsorbed by TODGA/SiO₂-P resin. With an increase in 0.5 M H₂C₂O₄, it was found that the Zr(IV) concentration in the effluent increased rapidly and then decreased, showing that Zr(IV) was efficiently eluted. Such an obvious change was due to the effective complexation of Zr(IV) with 0.5 M H₂C₂O₄, i.e., substituting the complex of Zr(IV) and H₂C₂O₄ for the complex of Zr(IV) and TODGA/SiO₂-P was a fast process of the kinetics exchange. The percentage recovered was calculated to be 94.8%. This results showed that the separation of Mo(VI) and Zr(IV) from a 3 M HNO₃ solution containing 0.05 M DTPA by TODGA/SiO₂-P resin packed column was technically feasible.

CONCLUSIONS

The adsorption behavior of Mo(VI) and Zr(IV) towards TODGA/SiO₂-P extraction resin was investigated by examining the effect of contact time and the concentrations of HNO₃ and DTPA. It was found that the adsorption of Mo(VI) and Zr(IV) strongly depended on the change in the HNO₃ concentration from 0.3 M to 9 M. 3 M HNO₃ was a critical acidity for the complex formation and dissociation of Mo(VI) with DTPA and TODGA/SiO₂-P as well as Zr(IV) with DTPA and TODGA/SiO₂-P. The adsorption of TODGA/SiO₂-P for Zr(IV) in 3 M HNO₃ either with or without 0.05 M DTPA was higher than that of Mo(VI), while Mo(VI) showed almost no adsorption towards TODGA/SiO₂-P.

Based on batch experiments, the separation of Mo(VI) and Zr(IV) from a 3 M HNO₃-0.05 M DTPA solution was performed by the TODGA/SiO₂-P resin packed column utilizing 3 M HNO₃, 0.1 M HNO₃, distilled water, and 0.5 M H₂C₂O₄ aqueous solution as eluents at 50°C. It was found that Mo(VI) and Zr(IV) were effectively eluted out by 3 M HNO₃ and 0.5 M H₂C₂O₄, respectively. The recovery was 101.6% for Mo(VI) and 94.8% for Zr(IV), respectively. Such a result reflected that Mo(VI) and Zr(IV) could be separated from each other by a HNO₃ solution containing 0.05 M DTPA using the method of extraction chromatography.

REFERENCES

1. Madic, C. (2001) Overview of the hydrometallurgical and pyrometallurgical processes studied world-wide for the partitioning of high active nuclear wastes, International Symposium NUCEF 2001, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki, Japan, 31 October-2 November, JAERI Conf. 2002-2004, March 2002, 27-37.
2. Kolarik, Z., Müllrich, U., and Gassner, F. (1999) Extraction of Am (III) and Eu (III) nitrates by 2,6-di-(5,6-dipropyl-1,2,4-triazin-3-yl)pyridines. *Solvent Extr. Ion Exch.*, 17 (5): 1155-1170.

3. Choppin, G.R. and Nash, K.L. (1995) Actinide separation science. *Radiochimica Acta*, 70–71: 225–236.
4. Mathur, J.N. and Nash, K.L. (1998) Thermodynamics of extraction of Am(III) and Eu(III) from nitrate and thiocyanate media with octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phoshine oxide. *Solvent Extr. Ion Exch.*, 16 (6): 1341–1356.
5. Horwitz, E.P. and Kalina, D.G. (1984) The extraction of Am(III) from nitric acid by octyl(phenyl) -N,N-diisobutylcarbamoylmethylphosphine oxide-tri-n-butyl phosphate mixture. *Solvent Extr. Ion Exch.*, 2 (2): 179–200.
6. Murali, M.S. and Mathur, J.N. (2001) Use of a mixture of TRPO and TBP for the partitioning of actinides from high level waste solutions of PUREX origin and its comparison with CMPO and other phosphorus-based extractants. *Solvent Extr. Ion Exch.*, 19 (1): 61–77.
7. Morita, Y., Fujiwara, T., and Shirahashi, K. (1995) Diisodecylphosphoric acid, DIDPA, as an extractant for transuranium elements, Global'95, Int. Conf. on Evaluation of Emerging Nuclear Fuel Cycle Systems, Versailles, France, 2, 1163–1170.
8. Wei, Y.-Z., Zhang, A., Kumagai, M., Watanabe, M., and Hayashi, N. (2003) Development of the MAREC process for HLLW partitioning using a novel silica-based CMPO extraction resin, The 11th International Conference on Nuclear Engineering, Tokyo, Japan, April 20–23, No.03-209, CD-ROM-ICONE-11-36084.
9. Zhang, A., Wei, Y.-Z., Kumagai, M., and Koma, Y. (2003) A new partitioning process for high level liquid waste by extraction chromatography using impregnated adsorbents, Proceedings of 2003 ANS/ENS International Winter Meeting, Global 2003, New Orleans, Louisiana, American, November 16–20.
10. Zhang, A., Wei, Y.-Z., and Kumagai, M. (2003) The adsorption properties and mechanism of molybdenum and zirconium with a porous silica-based extraction resin in the MAREC process. *Solvent Extr. Ion Exch.*, 21 (4): 591–611.
11. Wei, Y.-Z., Zhang, A., Kumagai, M., Watanabe, M., and Hayashi, N. (2004) Development of the MAREC process for HLLW partitioning using a novel silica-based CMPO extraction resin. *J. Nucl. Sci. Technol.*, 41 (3): 315–322.
12. Zhang, A., Wei, Y.-Z., and Kumagai, M. (2004) Synthesis of a novel macroporous silica-based polymeric material containing 4,4',(5')-di(tert-butylcyclohexano)-18-crown-6 functional group and its adsorption mechanism for strontium. *Reactive and Functional Polymers*, 61 (2): 191–202.
13. Zhang, A., Wei, Y.-Z., Kumagai, M., and Koyama, T. (2004) Kinetic studies on the adsorption of strontium by a novel silica-based 4,4',(5')-di(tert-butylcyclohexano)-18-crown-6 extraction resin in nitric acid medium. *J. Radioanal. Nuc. Chem.*, 262 (3): 739–744.
14. Zhang, A., Wei, Y.-Z., Hoshi, H., and Kumagai, M. (2004) Adsorption and chromatographic separation of Mo(VI) and Zr(IV) ions from a high-concentration oxalic acid solution by a macroporous silica-based N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide polymeric adsorbent. *Adsorpt. Sci. Technol.*, 22 (6): 497–509.
15. Zhang, A., Wei, Y.-Z., Kumagai, M., Koma, Y., and Koyama, T. (2005) Resistant behavior of a novel silica-based octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide extraction resin against nitric acid, temperature and γ -irradiation. *Radiat. Phys. Chem.*, 2 (4): 455–463.
16. Zhang, A., Wei, Y.-Z., and Kumagai, M. (2002) Experimental study on the basic characteristic of a novel silica-based CMPO adsorbent. *Bulletin of the Institute of Research and Innovation*, 23 (1): 1–8.

17. Narita, H., Yaita, T., Tamura, K., and Tachimori, S. (1998) Solvent extraction of trivalent lanthanides ions with N,N'-dimethyl-N,N'-diphenyl-3-oxapentanamide. *Radiochim. Acta*, 81: 223–226.
18. Sasaki, Y., Sugo, Y., Suzuki, S., and Tachimori, S. (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO₃-n-dodecane system. *Solvent Extr. Ion Exch.*, 19 (1): 91–103.
19. Tachimori, S. (2001) ARTIST process: A novel chemical process for treatment of spent nuclear fuel. Japan Atomic Energy Research Institute, Oct., JAERI-Research, 2001-048, 23.
20. Tachimori, S., Sasaki, Y., Morita, Y., and Suzuki, S. (2002) Recent progress of partitioning process in JAERI: Development of amide-based ARTIST process, Proceedings of the 7th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Oct. 14–16, Jeju: Republic of Korea, 441–444.
21. Tachimori, S., Sasaki, Y., and Suzuki, S. (2002) Modification of TOOD-n-dodecane solvent with a monoamide for high loading of lanthanides (III) and actinides (III). *Solvent Extr. Ion Exch.*, 20 (6): 687–700.
22. Wei, Y.-Z., Kumagai, M., Takashima, Y., Modolo, G., and Odoj, R. (2000) Studies on the separation of minor actinide from high-level wastes by extraction chromatography using novel silica-based extraction resins. *Nucl. Technol.*, 132: 413–423.
23. Jenkins, I.L. and Wain, A.G. (1963) Molybdenum species in acid solution. *J. Appl. Chem.*, 13: 561–564.
24. Ojo, J.F., Taylor, R.S., and Sykes, A.G. (1975) Kinetics of the rapid monomer-dimer equilibration of molybdenum(VI) in aqueous perchloric acid solutions. *J. Chem. Soc. Dalton, Part 1*, 500–505.
25. Pribylova, G.A., Chmutova, M.K., Smirnov, I.V., Shadrin, A.Yu., Nesterova, N.P., and Myasoedov, B.F. (1995) Extraction of Mo(VI) from nitric acid solutions by octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide. *Soviet Radiochem.*, 37 (5): 401–404.
26. Cruywagen, J.J. and Heyns, J.B.B. (1987) Equilibria and UV spectra of mono- and polynuclear molybdenum(VI) species. *Inorg. Chem.*, 26: 2569–2572.
27. Howard, T.E., Bryan, M.G., and Peter, L. (1975) Crystal structure of the heptamolybdate(VI) (Paramolybdate) Ion, [Mo₇O₂₄]⁶⁻, in the ammonium and potassium tetrahydrate salts. *J. Chem. Soc. Dalton, Part 1*, 505–510.

